Stat-Tech™
STATIC DISSIPATIVE & ELECTRICALLY CONDUCTIVE FORMULATIONS
Stat-Tech™ Static Dissipative and Electrically Conductive Formulations are specifically engineered to provide antistatic, ESD and EMI/RFI shielding performance for critical electronic equipment applications. These materials combine the performance of select engineering resins with reinforcing additives, such as carbon powder, carbon fiber, nickel-coated carbon fiber and stainless steel fiber, for low-to-high levels of conductivity depending upon application requirements.

<table>
<thead>
<tr>
<th>Base Resin</th>
<th>PC</th>
<th>PC/PSU</th>
<th>PES</th>
<th>PEI</th>
<th>PP</th>
<th>ABS</th>
<th>PEEK</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel Temperatures</td>
<td>°F (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack & Hold Pressure</td>
<td>50%–75% of Injection Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection Velocity</td>
<td>0.5–2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back Pressure</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw Speed</td>
<td>40–70</td>
<td>40–70</td>
<td>40–70</td>
<td>40–70</td>
<td>40–70</td>
<td>40–70</td>
<td>40–70</td>
<td>40–70 **</td>
</tr>
<tr>
<td>Drying Parameters</td>
<td>6 hrs @ 250 (121)</td>
<td>4 hrs @ 250 (121)</td>
<td>4 hrs @ 275 (135)</td>
<td>4 hrs @ 250 (121)</td>
<td>3 hrs @ 300 (150)</td>
<td>2 hrs @ 200 (93)</td>
<td>3 hrs @ 275 (135)</td>
<td>4 hrs @ 180 (82)</td>
</tr>
<tr>
<td>Cushion</td>
<td>0.125–0.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw Compression Ratio</td>
<td>2.0:1–2.5:1</td>
<td>2.0:1–2.5:1</td>
<td>2.5:1–3.5:1</td>
<td>2.5:1–3.5:1</td>
<td>2.5:1–3.5:1</td>
<td>2.5:1–3.5:1</td>
<td>2.5:1–3.5:1</td>
<td></td>
</tr>
<tr>
<td>Nozzle Type</td>
<td>General Purpose</td>
<td>Reverse Taper</td>
</tr>
<tr>
<td>Clamp Pressure</td>
<td>5–6 Tons/in²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* A reverse temperature profile is important to obtain optimum conductive properties. Other key processing parameters are slow injection speeds and low back pressures.

** Avoid processing for a resin-rich surface. Conductive properties are achieved with a silver or fibrous surface appearance.
STARTUP & SHUTDOWN

<table>
<thead>
<tr>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purge Compound</td>
</tr>
<tr>
<td>Recycling</td>
</tr>
</tbody>
</table>

MOLD DESIGN

<table>
<thead>
<tr>
<th>Recommendations</th>
</tr>
</thead>
</table>
| **Gates** | • Many different types of gates can be used such as pin, fan, tunnel, tab and edge gates. Gate type should be selected based on location and part geometry.
• Gate diameters equivalent to 50%-75% of the average wall thickness are recommended.
• Land lengths of 0.020”–0.035” (0.50mm–0.90mm) are typically recommended. |
| **Runners** | • Full-round runners or a modified trapezoid runner are the best designs. Half-round runners are not recommended.
• Only naturally balanced runner systems (“H” pattern) are recommended.
• Runner diameters larger than 0.150” (3.8mm) and not exceeding 0.375” (9.5mm) are recommended.
• Step each 90° bend in the system down in size (from sprue to gate) approximately 1/16” (1.5mm) to reduce pressure drop.
• Place vents at each 90° intersection and vent to atmosphere.
• Hot runner molds are acceptable and should be sized by the manufacturer. |
| **Cold Slug Wells** | • Place these wells at the base of the sprue to capture the cold material first emerging from the nozzle.
• Place wells at every 90° bend in the runner system.
• Well depths approximately 1.5 times the diameter of the runner provide the best results. |
| **Venting** | • Place vents at the end of fill and anywhere potential knit/weld lines will occur.
• All vents need to be vented to atmosphere.
• For circular parts, full perimeter venting is recommended.
• Cut vent depths to:
 - PC Compounds: 0.001”–0.002” depth and 0.250” width
 - PC/PSU Compounds: 0.002”–0.003” depth and 0.250” width
 - PES Compounds: 0.003”–0.004” depth and 0.250” width
 - PEI Compounds: 0.001”–0.003” depth and 0.250” width
 - PP Compounds: 0.001”–0.002” depth and 0.250” width
 - ABS Compounds: 0.0015”–0.0025” depth and 0.250” width
 - PEEK Compounds: 0.002”–0.004” depth and 0.250” width
 - Nylon Compounds: 0.002” min. depth and 0.250” width
• Increase vent depth to 0.040” (1.0mm) at 0.250” (4.0mm) away from the cavity and vent to atmosphere. |
<p>| Draft Angle | • Maintain a minimum draft angle of 1/2° per side. |</p>
<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
</table>
| Incomplete Fill | Melt and/or mold temperature too cold | • Increase nozzle and barrel temperatures
• Increase mold temperature
• Increase injection speed
• Increase pack and hold pressure
• Increase nozzle tip diameter
• Check thermocouples and heater bands |
| Mold design | | • Enlarge or widen vents and increase number of vents
• Check that vents are unplugged
• Check that gates are unplugged
•Enlarge gates and/or runners
• Perform short shots to determine fill pattern and verify proper vent location
• Increase wall thickness to move gas trap to parting line |
| Shot Size | | • Increase shot size
• Increase cushion |
| Britteness | Melt temperature too low | • Increase melt temperature
• Increase injection speed
• Measure melt temperature with pyrometer |
| Degraded/Overheated material| | • Decrease melt temperature
• Decrease back pressure
• Use smaller barrel/excessive residence time |
| Gate location and/or size | | • Relocate gate to nonstress area
• Increase gate size to allow higher flow speed and lower molded-in stress |
| Fibers on Surface (Splay) | Melt temperature too low | • Increase melt temperature
• Increase mold temperature
• Increase injection speed |
| Insufficient packing | | • Increase pack and hold pressure, and time
• Increase shot size
• Increase gate size |
| Sink Marks | Part geometry too thick | • Reduce wall thickness
• Reduce rib thickness |
| Melt temperature too hot | | • Decrease nozzle and barrel temperatures
• Decrease mold temperature |
| Insufficient material volume| | • Increase shot size
• Increase injection rate
• Increase packing pressure
• Increase gate size |
| Flash | Injection pressure too high | • Decrease injection pressure
• Increase clamp pressure
• Decrease injection speed
• Increase transfer position |
| | Excess material volume | • Decrease pack pressure
• Decrease shot size
• Decrease injection speed |
| | Melt and/or mold temperature too hot | • Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Decrease screw speed |
<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
</table>
| Excessive Shrink | Too much orientation | • Increase packing time and pressure
 | | • Increase hold pressure
 | | • Decrease melt temperature
 | | • Decrease mold temperature
 | | • Decrease injection speed
 | | • Decrease screw rpm
 | | • Increase venting
 | | • Increase cooling time |
| Not Enough Shrink | Too little orientation| • Decrease packing pressure and time
 | | • Decrease hold pressure
 | | • Increase melt temperature
 | | • Increase mold temperature
 | | • Increase injection speed
 | | • Increase screw rpm
 | | • Decrease cooling time |
| Burning | Melt and/or mold | • Decrease nozzle and barrel temperatures
 | | temperature too hot
 | | • Decrease mold temperature
 | | • Decrease injection speed |
| | Mold design | • Clean, widen and increase number of vents
 | | • Increase gate size or number of gates |
| | Moisture | • Verify material is dried at proper conditions |
| Nozzle Drool | Nozzle temperature too hot| • Decrease nozzle temperature
 | | • Decrease back pressure
 | | • Increase screw decompression
 | | • Verify material has been dried at proper conditions |
| Weld Lines | Melt front temperatures too low| • Increase pack and hold pressure
 | | • Increase melt temperature
 | | • Increase vent width and locations
 | | • Increase injection speed
 | | • Increase mold temperature |
| | Mold design | • Decrease injection speed
 | | • Increase gate size
 | | • Perform short shots to determine fill pattern and verify proper vent location
 | | • Add vents and/or false ejector pin
 | | • Move gate location |
| Warp | Excessive orientation | • Increase cooling time
 | | • Increase melt temperature
 | | • Decrease injection pressure and injection speed |
| | Mold design | • Increase number of gates |
| Sticking in Mold | Cavities are overpacked| • Decrease injection speed and pressure
 | | • Decrease pack and hold pressure
 | | • Decrease nozzle and barrel temperatures
 | | • Decrease mold temperature
 | | • Increase cooling time |
| | Mold design | • Increase draft angle |
| | Part is too hot | • Decrease nozzle and barrel temperatures
 | | • Decrease mold temperature
 | | • Increase cooling time |