Plastics can be naturally sticky and have a high coefficient of friction when coming in contact with other plastic parts or a variety of other surfaces. This can cause operational or functional performance problems such as:

- Parts sticking to the mold surface during ejection
- Displayed products not sliding across store shelves
- Push/pull caps sticking together, making it difficult to open the container
- Minor differences in part dimensions, making it difficult for assembled parts to go together
- Sheet or film adhering to itself, making separation difficult
- Scratch and scuff marks caused by parts rubbing together

Slip additives can help address these concerns. Slip chemistries are typically fatty amides such as erucamides or oleamides. When these materials are added to a polymer, they migrate or “bloom” to the surface. At the surface they form a lubricating layer that decreases the coefficient of friction, which allows the polymer to “slip” more easily across another surface.

Slip additives provide value to both the processor and the OEM. For the processor, fewer parts sticking in the mold leads to a reduction in reject parts and an increase in production throughput. For sheet and film processors, slips reduce polymer build-up on the die that can cause surface flaws, and facilitate quicker separation of sheet or film, leading to improved efficiency and reduced cost of product.

For OEMs, the use of slip additives can result in improved consumer satisfaction, as products are easier to use and have better aesthetics, leading to increased overall sales. For example, push/pull caps open and close with ease, caps and closures require less force to open, film products like garbage bags separate more easily, and durable goods look pristine as scratches are less evident.

OnCap™ slip additives are available in concentrated powder or pellet form in carrier systems that are compatible in
most application resins, but are most commonly used in polyolefins. Typical use rates for the pellet range from 2% to 5%, with typical use rates for the powder ranging from 0.1% to 0.5%. The additive can be metered at the processing machine or preblended in a salt and pepper mix. Slip additives can be combined with colorants into a single OnColor™ SmartBatch™ concentrate.

With these additives, there are a few limitations that need to be observed:

- Overdosing a slip additive can reduce output as the additional lubrication makes it difficult for the material to convey down the screw.
- When used in powder form, the relatively low melting temperature slip additives can bridge in the throat of the machine.
- It can be difficult for ink or labels to adhere for any reasonable duration to the part because of the migration of the slip additive to the surface.

Application

Slip additives are most widely used in polyethylene and polypropylene film and injection molded part applications. They can also be used in polystyrene applications. Slip additives find use in several markets, including packaging, consumer and industrial goods, building and construction, and transportation.

PolyOne offers a one-stop source of color concentrates, additive concentrates, color and additive systems, and associated technology and support services. Our expertise extends across a wide variety of industrial and consumer markets. We have more than 20 manufacturing locations in North America, Europe and Asia, with color labs, design centers and sales offices located around the world.

Please contact your nearest sales office for assistance in choosing the right solution for your needs.

CONTACT INFORMATION

PolyOne Americas

33587 Walker Road

Avon Lake, Ohio 44012

United States

+1 440 930 1000

PolyOne Asia

Guoshoujing Road No. 88

Z.J Hi-Tech Park, Pudong

Shanghai, 201203, China

+86 (0) 21 5080 1188

PolyOne Europe

Rue Melville Wilson 2

5330 Assesse, Belgium

+32 (0) 83 660 211

Copyright © 2008, PolyOne Corporation. PolyOne makes no representations, guarantees, or warranties of any kind with respect to the Information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the Information. Some of the Information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as “typical” or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in this Information. PolyOne makes no warranties or guarantees respecting suitability of either PolyOne’s products or the Information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability for your application, and you assume all risk and liability arising from your use of the Information and/or use or handling of any product. PolyOne MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the Information or products reflected by the Information. This data sheet shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.